

TD3250 Portable Three-phase Energy Meter Tester

1. Summary

TD3250 is a portable standard meter specially used for energy meter on-site test, AC sampling etc. It integrates the functions of electrical parameter measurement, energy meter calibration, connection mode identification, harmonic analysis, waveform display, phasor diagram display, data management.

2. Features

- Accuracy: Class 0.02 or 0.05.
- 3PH voltage measurement: 0~480 V.
- 3PH current measurement (direct) : 50 mA~ 12 A.
- 3PH current measurement (clamp) : 100 mA~ 120 A.
- Support energy pulse optical/electrical pulse input.
- LCD touch screen.
- Support AC 100 V~264 V wide range supply.
- Support large capacity lithium battery.
- Internal memory, and quickly record test data.
- USB and RS232 interfaces.

 Tunkia Co., Ltd.

 领略前沿科技·创新电磁测量

3. Application

2

3

4. Characteristics

6

☆ Harm	onic Function
	1 2
	SP3W) 50.000 Hz 0000 V AUTO PT 100 kV t = 20 s 0 ()
	500 A / 5 MA / 100 V
	02 000.000 00
	10 000.000 00 ooo.ooo oo* 11 000.000 00 ooo.ooo oo* 谐波
	14 000.000 00 000.000 00 [*] ¹⁶ 000.000 00 000.000 00 [*] 分析
	16 000.000 00 000.000 00° 17 000.000 00 000.000 00°
	22 000 000 000 000 000 11 000 000 000 00
	TERE 分量 INVERSION
5	
S/N	Function
1	It can measure $2^{nd} \sim 63^{rd}$ harmonics and display the amplitude or content.
2	Display the phase value of each harmonic.
3	Display the waveform after harmonic superposition.
	Display the phase of each harmonic. The spectrum of each harmonic is displayed
\checkmark	visually in the form of histogram (fundamental wave is 100%).

V (*) V A W U -00.	数据保存 型号 被 ^检 电影能表 编号 安装位置 检验日期	XXXXXX 三相电能表 123456 XX位置	中国 中部 支比測量 功率 満波 分析 温温度	く 日期 1 2 3 4 5 6 7 8 9 10	2021年10月 014546812 4478312 0145878678 014546812 014546812 014546812 014546812 014546812 014546812	> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 名称、XXXXX 編号、XXX 編号、XXX 建築、XXXXXX 体验の、0.01 社会の、XXXXXX 电能限差 V 01 000.000 0 % 03 000.000 0 % 05 000.000 0 % Avg 0000. 	温度 温度 接线方式 检验日期 02 000,0 04 000,0	26.5 80% 三相四线 2021-10-18 0000 0 % 0000 0 %
nati P		000 00 000	▶开始	10	与 返回		面 删除	* 94	移动存储

5. Specifications

5.1Three-phase Voltage/Current Measurement

Туре	Measurement	Range	Resolution	Accuracy ±(ppm of reading + ppm of range) ^[1]			
	Mode			Class 0.05	Class 0.02		
	Direct Measurement	110 V	1 mV	300 + 200	120 + 80		
ACV		220 V	1 mV	300 + 200	120 + 80		
		440 V	1 mV 300 + 200		120 + 80		
	Direct Measurement	1 A	10 µA	300 + 200	120 + 80		
		10 A	100 µA	300 + 200	120 + 80		
	Clamp Measurement	1 A ^[2]	10 µA	0.2%*RG	0.1%*RG		
ACI		5 A	10 µA	0.2%*RG	0.1%*RG		
		10 A ^[2]	100 µA	0.2%*RG	0.1%*RG		
		20 A ^[2]	100 µA	0.2%*RG	0.1%*RG		
		100 A ^[2]	1 mA	< 50 A: 0.2%*RG; ≥ 50 A: 0.5%*RG	< 50 A: 0.1%*RG; ≥ 50 A: 0.2%*RG		
NI (141							

Note [1]: (ppm = parts per million) (e.g., 10ppm = 0.001%).

Note [2]: The clamp of 5A model is standard, and other models is option.

• Voltage input: 10 V~480 V, 6-digits decimal display.

- Current input (direct measurement): 0.05 A~12 A, 6-digits display.
- Current input (clamp measurement): 0.1 A~6 A, 6-digits display.

5.2 Frequency/Phase

Frequency	Range	45.000 Hz~65.000 Hz			
	Resolution	0.001 Hz			
	Accuracy	± 0.01 Hz			
Phase	Range	0.000°~359.999°			
	Resolution	0.001°			
	Acourcov	Direct Measurement: ± 0.05°			
	Accuracy	Clamp Measurement: ± 0.2°			

5.3 Three-phase Power / Energy Measurement

	Accuracy						
Power/Energy Parameters	Direct Mea	asurement	Clamp Measurement				
	Class 0.05	Class 0.02	Class 0.05	Class 0.02			
Active P/E cos φ ≥0.5	± 0.05%*FS ^[3]	± 0.02%*FS ^[3]	± 0.2%*FS ^[3]	± 0.1%*FS ^[3]			
Reactive P/E sin φ ≥0.5	± 0.1%*FS ^[3]	± 0.05%*FS ^[3]	± 0.5%*FS ^[3]	± 0.2%*FS ^[3]			
Apparent power	± 0.1%*FS ^[3]	± 0.05%*FS ^[3]	± 0.5%*FS ^[3]	± 0.2%*FS ^[3]			
Power factor	± 0.0005	± 0.0005	± 0.002	± 0.002			
Note [3]: FS=voltage range value × current range value.							

• Power factor measurement range: -1.000 0... 0.000 0... 1.000 0.

- Standard energy pulse output: high frequency full range value corresponds to 60 kHz, low frequency full range value corresponds to 6 Hz.
- Standard energy pulse input: frequency ≤ 200 kHz, voltage: 0... 3.3 V... 24 V.

6. General Specifications

Power Supply	AC (220 ± 22) V, (50 ± 2) Hz
Temperature	Working temperature: 0°C~45°C
Performance	Storage temperature: -20°C~70°C
Humidity	Working humidity: < 80% @ 30°C, < 70% @ 40°C, < 40% @ 50°C
Performance	Storage humidity: (20%~80%) R·H, non-condensing
Interface	USB, LAN

7. Ordering Information

